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population. For age-frequency data
that have been truncated to elimi­
nate some older age groups, a
slightly biased maximum likelihood
estimator ofsurvival (CRt) that can
be solved by iteration is

where K + 1 = the number of fully
recruited age groups used (Chap­
man and Robson 1960).

When age-frequency data are insuf­
ficient for fisheries scientists to es­
timate year- or age-specific mortal­
ity, they are often pooled to provide
a single estimate for all fully re­
cruited age groups. The accuracy of
a pooled estimate depends largely
on whether or not the sampled
population is in a steady state, i.e.
a state in which the rates ofrecruit­
ment and mortality are relatively
constant with respect to time and
age. Departures from this condition
introduce known biases to the esti­
mate of mortality (Ricker, 1975;
Jensen, 1984). These departures
may be difficult to detect because
trends in time-specific recruitment
or time- and age-specific mortality
can result in a population age struc­
ture that is quite similar to that for
a steady-state population. For in­
stance, a long-term increasing
trend in recruitment could result in
a stable age frequency that would
indicate a higher mortality rate
than was actually occurring (for
various scenarios see Ricker, 1975).

Pooled-data estimation tech­
niques that have been applied to
age-frequency data for fish popula­
tions include "catch curve" leaf,'lt­
squares regression analysis (Seber,
1973; Ricker, 1975) and nonre­
gression-based methods developed
by Heincke (1913), Jackson (1939),
and Chapman and Robson (1960).
Ofthe nonregression-based estima­
tors, the Chapman and Robson es­
timator is preferred because it is

the least sensitive to sampling er­
ror (Robson and Chapman, 1961).
Despite the restrictive steady-state
requirements, these techniques
have been applied to a wide vari­
ety of marine animals; recent ex­
amples include Atlantic croaker,
Micropogonias undulatus (Barbieri
et aI., 1994); blue rockfish, Sebastes
mystinus (Adams and Howard,
1996); red drum, Sciaenops ocel­
latus (Ross et aI., 1995); red porgy,
Pagrus pagrus (Pajuelo and Lorenzo,
1996); and deep-water shrimp,
Aristeus antennatus (Ragonese and
Bianchini, 1996).

The Chapman-Robson (CR) esti­
mator is based on the probability
density function of the geometric
distribution and provides a unique
minimum-variance, unbiased esti­
mate of survival (S),

where Xi = the number of years
the ith fish is older
than the age at full re­
cruitment; and

N = the total number of
fully recruited fish.

The underlying assumption is that
the age ofeach fish sampled repre­
sents a random, independent age
observation from a steady-state

The least-squares regression (LS)
estimator provides an unbiased es­
timate of-log S (denoted as Z, the
instantaneous total mortality rate)
and is based on a linear fit to a log­
transformed exponential decay
model

E(1og~)=10g(pNo)-Zj,

where N. = the number of age j
J fish in the sample;

No = the original number of
fish in the population;
and

p = the probability that a
fish in the population is
included in the sample
<Seber, 1973).

As required for linear regression,
log-abundance data are assumed to
be independent and normally dis­
tributed with constant variance
along the regression line. Concern
about violating these assumptions
led Chapman and Robson <1960) to
recommend that when the LS
method is used, the age-frequency
data should be truncated to exclude
less abundant age groups.

Although both the CR and LS
estimator returned very accurate
estimates of Z for a suite of exact
steady-state age frequencies (Jensen,
1985), the effect ofrandom variation
within the sample age frequencies
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has not been investigated. Jensen (1996) found that
the CR method was less biased and more precise than
the LS method when used to estimate mortality from
the age structure of pooled, simulated net-hauls of
lake whitefish, Coregonus clupeaformis. A random
sample drawn from a known geometric distribution
of ages will have an age distribution that varies sto­
chastically from the true distribution. In this study, I
evaluate the effect of sample size, mortality rate, and
an age-frequency truncation scheme on the accuracy
and precision of the CR (and CRt) and LS estimators
when the sample age frequency is drawn randomly from
a population ofgeometrically distributed ages.

Materials and methods

I used a stochastic model that allowed for random
departures from the exact age distribution of the
population to generate the simulated sample age fre­
quencies. Under a known, constant survival rate, a
geometric distribution function defines the cumula­
tive probability ofa fish from a fully recruited cohort
being less than age j as

j<l

j~l,

where S = the annual survival rate.

For this simulation, age-O fish are defined as those
in their first year of full vulnerability to capture. I
sampled individual aged fish from this distribution
by choosing a random, uniform number (probabil­
ity) within the interval from 0 to 1 and determining
the age corresponding to this value of the cumula­
tive distribution function. By repeating this process,
I was able to draw randomly a specified number of
aged fish from a known geometric distribution de­
fined by S. Each generated sample consisted of 100­
1,000 individuals drawn independently from geomet­
ric distributions defined by Z values between 0.20
and 2.00. One thousand simulations were run for
each combination of sample size and Z. For each
simulation, a CR estimate of S and an LS estimate
ofZ were calculated from the sample age frequency.
Means of the Chapman-Robson estimates of S were
converted to Z so that they could be compared to the
means of the LS estimates ofZ.

The effect of constraining the right-hand limb of
the sample age frequency was investigated by trun­
cating each age-frequency distribution and recalcu­
lating mortality. The CRt and the LS estimates were
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calculated with these data, and the mean CRt esti­
mates of S were converted to Z. Each truncated age
frequency was a subset ofa simulation from the com­
plete age-frequency simulations in which all fish that
were older than the oldest age group meeting or ex­
ceeding a threshold abundance of 5 fish were re­
moved. Although this truncation scheme reduced the
effective sample size within each simulation, it ac­
curately reflected the application of a truncation
scheme to a real sample.

Results and discussion

Simulations indicated that mean CR estimates of
mortality for the complete age frequencies were es­
sentially unbiased. At all Z's and sample sizes ex­
amined, the mean CR estimator agreed closely with
the true value ofZ. All differences between estimated
mean Z's and true Z's (relative to the true Z) were
<1% (Table 1).

The maximum likelihood estimator developed for
use with truncated age frequencies (CRt) showed a
negative bias that was greatest when sample size
was low. With a 5-fish threshold rule, the mean CRt
estimate ofinstantaneous total mortality was biased
-12% at Z = 0.2 for a random sample of 100 fish (Fig.
1). At sample sizes of 300 fish or more, bias was re­
duced to less than about -4% for all Z's (Fig. 1).

The mean LS estimates of Z for complete age fre­
quencies were consistently less than the true instan­
taneous total mortality rate. This bias was greatest
at low levels ofZ when sample sizes were small (Table
2). At Z = 0.2, the difference between the mean esti­
mated Z and true Z ranged from -16% for samples
of 1,000 individuals to -37% for samples of 100. De­
viations were much less, -4% to -8%, for all sample
sizes when the true Z was 2.0. Bias in the LS esti­
mator was reduced by truncating the sample age fre­
quency. When I used a minimum threshold abundance
offive, the negative bias was reduced to less than about
5% at sample sizes of at least 200 fish (Fig. 1).

Precision of the CR and CRt estimators was gen­
erally better than that ofthe LS estimator, especially
at low Z's. Although precision improved for all esti­
mators as sample sizes became larger, the coefficient
of variation lCV) for the CR and CRt estimators ap­
proached 1% for large samples at Z = 0.2, whereas
the CV for the LS estimator approached only 6-9%
(Fig. 2). For all given sample sizes, the precision of
the CR and CRt estimators deteriorated as Z in­
creased. The precision of the LS estimator changed
little as Z increased, except when the estimator was
based on samples of only 100 fish. In general, the
CV's for the CR or CRt estimators were less than the
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Table 1
Percent deviation from true instantaneous total mortality rate <Z) for the mean of 1,000 Chapman-Robson estimates ofZ for each
of the given combinatio~sof sample size and true Z. Frequencies for all age groups were used in calculating mortality rates.

Sample size

TrueZ 100 200 300 400 500 600 700 800 900 1,000

0.20 -0.2 -0.1 -0.2 0.1 -0.0 -0.0 0.1 0.2 0.1 -0.0
0.40 -0.1 0.0 0.2 -0.1 0.3 -0.1 0.1 0.2 -0.2 0.2
0.60 -0.3 -0.2 0.0 0.0 -0.1 -0.0 -0.2 0.0 -0.2 0.1
0.80 -0.1 -0.2 0.2 -0.1 0.0 0.2 0.1 -0.0 -0.1 0.0
1.00 0.4 0.2 004 -0.1 -0.0 0.1 0.1 0.1 0.0 -0.2
1.20 -0.5 0.2 0.1 -0.0 0.1 0.0 0.2 -0.0 -0.2 -0.1
lAO -0.3 0.3 -0.1 0.1 0.0 -0.0 -0.1 -0.1 0.0 -0.1
1.60 0.6 -0.1 0.2 0.2 0.2 -0.2 0.1 -0.1 -0.1 -0.1
1.80 -0.2 0.1 0.1 -0.1 0.1 -0.2 -0.1 0.1 -0.2 0.2
2.00 -0.1 -0.0 0.3 -0.1 0.0 -0.2 -0.2 -0.1 0.2 0.2

10
CR and CRt, Z = 0.2

10
LS, Z= 0.2

CR and CRt, Z =2.0

0+-....---4....- ------ - ......---j~7':1l:7:_:~=:_,_A_-
0 0 0 0 .

·10

·20

"" ·30!
~ .40 L..-.---_.---_.---_.------,.------,.------,.------,_---,_---,_
~ 100 200 300 400 500 600 700 800 900 1000

.~
1ii
~ 10

i
~

0 0 0 0 .

·10 .J--r---r---r---r---r---r---r--.,.--.,.--.---

100 200 300 400 500 600 700 SOD 900 1000

0+---------------,;:-----,;:------,,,....-----,...---
fJ······O ··O O O O O O O

·10
0'

-20

·30

-40 ..L.--r--.,.--.,.--.,.--.,.--.,.--.,.--.,.--.----.--

100 200 300 400 500 600 700 800 900 1000

LS, Z = 2.0
10

o +-_0:..,;---------=----:-:-l.."..-......,,;\L.:..:....:..:...:..;J.. .L:.:....:,:...:.,:.o:::.:·.:..:...:..:..~·o~
.0· ....

·10 ..L.--r---r--.,.--.,.--.,.--.,.--.,.--.,.--.,.--r-

100 200 300 400 500 600 700 SOO 900 1000

Sample size

Figure 1
Percent deviation from true instantaneous total mortality (Z) for the mean of 1,000 Chapman-Robson (CRI or Chapman-Robson­
for-truncated-data (CRt) estimates of survival or least-squares regression <LSI estimates of equivalent Z for different sample
sizes when true Z is 0.2 or 2.0. The threshold levels, representing the minimum acceptable abundance for the oldest age used in
the calculation of mortality were one fish <---e-) and five fish {---O-J.
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Table 2
Percent deviation from true instantaneous total mortality rate (Z) for the mean of 1,000 least-squares regression estimates ofZ for
each of the given combinations ofsample size and true Z. Frequencies for all age groups were used in calculating mortality rates.

Sample size

TrueZ 100 200 300 400 500 600 700 800 900 1,000

0.20 -36.8 -28.5 -24.6 -22.1 -20.5 -19.9 -18.2 -17.4 -17.3 -15.6
0.40 -25.2 -20.4 -18.3 -16.9 -14.7 -14.3 -14.3 -13.2 -13.2 -12.3
0.60 -19.6 -17.1 -14.0 -12.9 -12.9 -11.9 -11.5 -11.3 -10.7 -10.6
0.80 -15.8 -14.1 -11.3 -11.0 -10.3 -9.8 -9.6 -9.3 -9.2 -9.7
1.00 -13.6 -10.7 -9.5 -9.3 -8.7 -9.1 -8.3 -7.8 -7.9 -7.9
1.20 -13.0 -9.1 -9.2 -8.4 -7.3 -8.2 -7.5 -7.2 -7.3 -6.8
1.40 -10.8 -9.1 -7.5 -7.9 -6.6 -6.8 -6.6 -6.5 -5.9 -7.1
1.60 -8.8 -7.6 -6.9 -6.2 -6.0 -7.0 -5.9 -5.6 -5.7 -6.1
1.80 -8.3 -6.7 -7.2 -6.4 -5.5 -5.1 -4.4 -5.6 -4.8 -4.9
2.00 -7.7 -5.9 -6.1 -6.1 -5.7 -5.3 -5.0 -5.1 -4.6 -4.4
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Figure 2
Coefficients ofvariation for Chapman-Robson (CR) and Chapman-Robson-for-truncated-data (CRt) estimates ofsurvival or least­
squares regression (LSI estimates of equivalent instantaneous total mortality (Z) made from samples of 100 to 1,000 ages gener­
ated stochastically under Z =0.2 or Z =2.0. Complete age frequencies (----e-) or those truncated using a 5-fish threshold
(-0-) were used.
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CV's for the LS estimator when Z was low but were
similar or higher when Z was high.

When all fully recruited fish are equally available
to a sampling gear, the CR estimator can provide a
more accurate estimate of mortality than the LS es­
timator can. Applying the least-squares estimator to
these data clearly violates the linear-regression as­
sumption ofequal variances among age groups. When
a population is subjected to a low Z, the frequency
distribution of log-abundances for older age groups
in a sample becomes skewed to the right because log­
abundance reaches a lower limit at zero (log of 1;
Fig. 3). The frequency distribution oflog-abundance
then becomes truncated (undefined) past some dis­
tance to the left of its mean when zero abundances
occur in the untransformed frequencies. The vari­
ances of the log-abundances appear to be positively
related to age until the log-abundance frequencies
become truncated when zero abundances appear in
the samples for older age groups.

Empirical evidence led Chapman and Robson
(1960) to conclude that haul data (catch rates for each
age group) had an approximately constant variance
when log transformed. However, the results from my
simulations indicate that variances for the log-abun­
dances are likely to differ among age groups. The
assumption of constant variance is likely to be met
only when the sampling gear operates on a few abun­
dant age groups, in which there is no chance of only

400

-- Age 5
Age 6

--- Age 7
- - AgeS
- - Age 9
- - Age 10

2

Log abundance

periodically encountering an older age group. This
led Chapman and Robson (1960) to suggest that these
data should be truncated to eliminate the age fre­
quencies beyond the oldest age with a minimum
abundance offive fish. Although my findings concur
with those of Chapman and Robson, the use of this
threshold rule to eliminate older age groups does not
completely eliminate all bias in the LS estimator­
bias that can be attributed to violations of the as­
sumptions on which the linear regression is based.

For truncated age-frequency data, both estimators
gave biased results when small samples were drawn
from a population of many age groups (Z=0.2). In
these cases, truncation generally resulted in smaller
samples that had far fewer age groups than were in
the original complete age frequency. At high Z's, age­
frequency truncation reduced bias in the LS estima­
tor to less than 5% at all sample sizes and reduced
bias in the CRt estimator to less than 2%.

Violations of steady-state assumptions probably
impart the most serious biases to pooled estimators
ofmortality. By simply inspecting a plot oflog-abun­
dance versus age for evidence of concavity or for a
trend in the linear regression residuals, one can de­
tect gross violations to these assumptions. Subtle
biases inherent when the assumptions required by
linear regression are not met are more difficult to de­
tect. Both the CR and LS methods can provide very
accurate and precise estimates ofZ for age frequencies

that follow an exact geometric distri­
bution (Jensen, 1985). However, the LS
estimator is biased when sample ages
are drawn randomly from a steady­
state, geometrically distributed popu­
lation, whereas the CR estimator is not.
The LS estimator may be more robust
when age samples are not taken ran­
domly (Chapman and Robson, 1960).
The CRt and LS estimators generally
showed similar levels ofbias when the
sample age structure is truncated with
a minimum frequency criterion of 5
fish. In summary, the CR estimatorwill
provide a more accurate and at least
as precise an estimate of mortality as
the LS estimator will when a random
and complete age-frequency sample
can be obtained from a population in
steady-state.

Figure 3
Frequency distributions oflog-abundance for ages 5-10 generated stochasti­
cally with Z =1.0. Log-abundance ofeach age group was taken from 1,000 simu­
lations in which samples of 1,000 ages were drawn during each simulation.
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